
ASIACRYPT 2004 December 9, 2004

On Provably Secure
Time-Stamping Schemes

Ahto Buldas

University of Tartu / Tallinn University of Technology / Cybernetica AS
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Security of Time Stamps: Overview

Time stamps – proofs that electronic records were created at certain time.

• Before 1989 – trusted services that manage the security of time stamps
• 1989 – first attempt to construct a secure scheme [Haber, Stornetta]
• 1991 – proof sketch for a broadcast scheme [Benaloh, de Mare]
• 1997 – proof sketch for a centralized scheme [Haber, Stornetta]

Regardless of the increasing practical importance of time-stamping, no
precise security proofs have been presented.
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Our Results

Our initial motivation was to complete the security proof outlined by Haber
and Stornetta [1997].

•We show that the security condition presented by Haber and Stornetta is
unattainable because it overlooks precomputation
• Inspired by a patent scenario, we derive a different security condition
•We modify the time stamp verification procedure
•We present a security proof for the modified scheme
• We argue the necessity of modifications – there are no black-box reduc-
tions otherwise
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Hash-Based Time-Stamping Schemes
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Server S – issues time stamps and publishes roundly digests.
Repository R – a write-only database for publishing roundly digests.
Verifier V – verifies time stamps.

4



ASIACRYPT 2004 December 9, 2004

Server Procedure

During the t-th round, S receives a list x1, . . . , xm of k-bit requests and
computes the root rt = Gh(x1, . . . , xm) of a hash tree and sends rt to R.
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S issues time-certificates c = (x, t, n, z), where n is a `-bit identifier , and
z = (z1, z2, . . . , z`).

Example: The certificate for x1 is (x1, t, 0000, (z1, z2, z3, z4)).
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Verifier Procedure

To verify a certificate (x, t, n, z), where n = n1n2 . . . n`, a verifier:
• Obtains an authentic copy of rt by querying R,
• Computes (y0, y1, . . . , y`), where y0 := x, and for i = 1, . . . , `:

yi :=

{

h(zi, yi−1) if ni = 1
h(yi−1, zi) if ni = 0

.

• Checks if y`
def
= Fh(x;n; z)

?
= rt.

Example: The verification of(x1, t, 0000, (z1, z2, z3, z4)):

x1 = y0 y3 = h(y2, z3) Repository

rt

=

y1 = h(x1, z1)

z1 z2 z3 z4

y2 = h(y1, z2)

y4 = h(y3, z4)
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Security condition

Adversary (Haber, Stornetta): Adversary AHS sends requests x1, . . . , xm

to S, obtains digests r1, . . . , rs form R, and tries to find (x, t, n, z) so that

x 6∈ {x1, . . . , xm} and Fh(x;n; z) = rt ∈ {r1, . . . , rs}.

S
Server

c1, . . . , cm

R
Repository

x1, . . . , xmAHS

Adversary
r1, . . . , rs

Fh(x;n; z) ∈ {r1, . . . , rs}

x, n, z

x 6∈ {x1, . . . , xm}

Security condition: Every poly-time AHS has negligible success probability.
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The Security Condition is not Attainable!

The scheme above is insecure against the following behavior of AHS:
• AHS picks x and z0 uniformly at random.
• AHS sends x0 = h(x, z0) to S and obtains c = (x0, t, n, z).
• AHS computes a ”fake” certificate (x, t, 0‖n, z0‖z).

z0

x x0 = h(x, z0)

c = (x0, t, n, z)

ServerAdversary
c′ = (x, t, 0‖n, z0‖z)

”Fake” certificate

By definition, Fh(x; 0‖n; z0‖z) = Fh(x0;n; z) = rt. Hence, the attack is
successful whenever x 6= x0 (as far as {x1, . . . , xq} = {x0}).

If h has reasonable security properties then Pr[x 6= x0] is non-negligible.
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New Security Condition

• Bob, a criminal who steals inventions (in cooperation with S), computes
r1, . . . , rs (not necessarily using Gh) that are stored in R.

• Alice, an inventor, creates a description XA of her invention and time-
stamps xA = H(XA). Some time later, XA is disclosed to the public.

• Bob creates a slightly modified version XB of the description (inventor’s
name should be replaced!) and computes x = H(XB)

• Bob tries to find (n, z), so that Fh(x;n; z) ∈ {r1, . . . , rs}.

New security condition: For every poly-time A = (A1, A2) and for every
poly-sampleable distribution D with Rényi entropy H2(D) = ω(log k):

Pr[(R, a)←A1(1
k), X←D, (n, z)←A2(X, a):Fh(H(X);n; z)∈R] = k−ω(1).
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Security

Let N ⊂ {0,1}∗ (set of valid identifiers) and |N|= kO(1). N can be viewed
as a hashing scheme published by S before the service starts.

New verification procedure: To verify c = (x, t, n, z) for X ∈ {0,1}∗, the
verifier checks if x = H(X), Fh(x;n; z) = rt, and n ∈ N.

New definition for the success probability of A:

Pr[(R,N,a)←A1(1
k), X←D, (n,z)←A2(X,a):Fh(H(X);n;z)∈R, n∈N]

Theorem 1: If h and H are collision-resistant, then the time-stamping
scheme is secure relative to every polynomially sampleable D with Rényi
entropy H2(D) = ω(log k).
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Proof Sketch Oops ...
again a
sketch!?

Proof of Theorem 1: Having A = (A1, A2) with ratio T(k)/δ(k), we con-

struct a collision-finder A′ for h with ratio T ′(k)
δ′(k)

= kO(1)
(

T(k)
δ(k)

)2
.

- A′ calls A1 to obtain R, N, and a;
- A′ picks X,X ′←D and computes (n, z)←A2(X, a), (n′, z′)←A2(X

′, a);
- A′ simulates Fh(H(X); n; z) and Fh(H(X ′);n′; z′).
- If Fh(H(X);n;z) = Fh(H(X ′);n′;z′), H(X) 6=H(X ′), and n = n′ then A′

checks the h-calls and outputs a collision for h.

We prove (Lemma 1) that if x 6= x′ and Fh(x;n; z) = Fh(x
′;n; z′) then

the h-calls of Fh(x;n; z) and Fh(x
′;n; z′) comprise a collision.

It can be shown (Lemma 2) that the success of A′ is at least

δ2(k)

T2(k)
− 2−H2(H(D)) =

δ2(k)

T2(k)
− k−ω(1). �
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Security Proofs and Oracle Separation

Semi black-box reduction: ∀polA2∃polA1: Ah
2 breaks TSh ⇒ Ah

1 breaks h.

Black-box reduction: ∃polS∀A: A breaks TSh ⇒ SA,h breaks h.

Separation: If h is collision-resistant relative to O but TSh is insecure rela-
tive to O, then there exist no black-box reductions.
Strong separation: If in addition,O = πh for a poly-time π, then there exist
no semi black-box reductions.

For more details: Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibil-

ity between cryptographic primitives. In TCC’04, LNCS 2951, pp.1–20. Feb. 2004.

12



ASIACRYPT 2004 December 9, 2004

Necessity of the Modified Verification

We prove that semi black-box reductions are insufficient for proving the
security of the unmodified time-stamping scheme, based on the collision-
resistance of h (and H).

We construct an oracleO relative to which there exists a collision-resistant
hash function hO: {0,1}2k → {0,1}k and a poly-time (AO1 , AO2 ) with

Pr[r ← AO1 , x← D, (n, z)← AO2 (x, r):FhO(x;n; z) = r] = 1

for every distributionD on {0,1}k. Hence, hO makes the unmodified time-
stamping scheme insecure. (Rules out black-box reductions)

We construct a hash function oracle Hk: {0,1}2k → {0,1}k, which is
collision-resistant relative to itself but H4k can be used to break the time-
stamping scheme that uses Hk. (Rules out semi black-box reductions)
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Construction of O

O comprises a random function H ← F and responds to:
• H-queries: on input (x1, x2) ∈ {0,1}2k return H(x1, x2) ∈ {0,1}k.
• A1-queries: on input 1k return the root rk of the complete Merkle tree
Mk, the leaves of which are all k-bit strings in lexicographic order.
• A2-queries: on input x ∈ {0,1}k find z ∈ ({0,1}k)k (based on Mk) so
that FH(x;x; z) = rk and output (x, z).

000 001 010 011 100 101 110 111

000,001)H(

3r

H(010, )011

Leaf sibling pair

Second layer pair

Third layer pair
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Choice of H

We define F as a set of all functions H, such that for all k:
• all non-leaf vertices in Mk contain different elements of {0,1}k

• all sibling-pairs in Mk are different.

Mk

Merkle tree
Pairs in the

other pairs
{0,1}k

Injection

Random
function

{0,1}2k
in

Hk

Lemma 5: Every collision-finding adversary AO for H that makes polyno-
mial number of oracle calls, has negligible success.
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Construction of H

The oracle O does not yet rule out semi black-box reductions – computa-
tion of O requires an exponential number of H-calls, and hence O 6= πH .

We embed Ok into a hash function H4k: {0,1}8k → {0,1}4k:

Pairs in the
Merkle tree

M4k

{0,1}4k

{0,1}8k

in
Other pairs

Injection that
comprises Ok

Random function

H4k
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Open question 1: More Efficient Reductions?

The reduction obtained is poly-preserving: T ′(k)
δ′(k)

= kO(1) ·
(

T(k)
δ(k)

)2
.

Practical guarantees are limited: If the time-stamping scheme is broken
with ratio T(k)

δ(k)
= 232 (very efficiently!) then the reduction implies that h

with 160-bit output can be broken with ratio 281, which is trivially true.

The reduction gives practical security guarantees only in case k > 400 –
much larger than in the existing schemes.

Question: Are there more efficient reductions?
For example, linear-preserving reductions: T ′(k)

δ′(k)
= kO(1) · T(k)

δ(k)
.
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Open question 2: General black-box constructions?

Is it possible to construct a hash function H = Ph so that if h is collision
resistant then the hash-based time-stamping schemes constructed from H

are secure?

Can we prove that there are no general black-box reductions of secure
time-stamping schemes to collision-resistant hash functions?
An obstacle: If an oracle O is able to compute the root of the complete
Merkle tree M

f
k for any (computable) f , then O can be “abused” to find

collisions for any hash function.
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Open question 3: Stronger security conditions?

In our security condition, A has unconditional uncertainty about x← D.

In practice, it is possible that A1 has some partial knowledge y = f(x)

about x (e.g. ciphertexts or signatures).

This suggests conditions of type: If x can be time-stamped based on y =

f(x), then x can be efficiently computed based on y.

Main problem:
• x1 = h(x, z0) (where z0 ←R {0,1}k) is partial knowledge about x and
is sufficient to time stamp x.
• If h is one-way, x cannot be computed from x1.
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