On Provably Secure Time-Stamping Schemes

Ahto Buldas

University of Tartu / Tallinn University of Technology / Cybernetica AS

Märt Saarepera

Independent

Security of Time Stamps: Overview

Time stamps – proofs that electronic records were created at certain time.

- Before 1989 trusted services that manage the security of time stamps
- 1989 first attempt to construct a secure scheme [Haber, Stornetta]
- 1991 proof sketch for a broadcast scheme [Benaloh, de Mare]
- 1997 proof sketch for a centralized scheme [Haber, Stornetta]

Regardless of the increasing practical importance of time-stamping, no precise security proofs have been presented.

Our Results

Our initial motivation was to complete the security proof outlined by Haber and Stornetta [1997].

- We show that the security condition presented by Haber and Stornetta is unattainable because it overlooks precomputation
- Inspired by a patent scenario, we derive a different security condition
- We modify the time stamp verification procedure
- We present a security proof for the modified scheme
- We argue the necessity of modifications there are no black-box reductions otherwise

Hash-Based Time-Stamping Schemes

Server S – issues time stamps and publishes roundly digests. Repository R – a write-only database for publishing roundly digests. Verifier V – verifies time stamps.

Server Procedure

During the *t*-th round, *S* receives a list x_1, \ldots, x_m of *k*-bit requests and computes the root $r_t = G_h(x_1, \ldots, x_m)$ of a hash tree and sends r_t to *R*.

S issues time-certificates c = (x, t, n, z), where n is a ℓ -bit *identifier*, and $z = (z_1, z_2, \dots, z_{\ell})$.

Example: The certificate for x_1 is $(x_1, t, 0000, (z_1, z_2, z_3, z_4))$.

Verifier Procedure

To verify a certificate (x, t, n, z), where $n = n_1 n_2 \dots n_\ell$, a verifier:

- Obtains an authentic copy of r_t by querying R,
- Computes $(y_0, y_1, ..., y_\ell)$, where $y_0 := x$, and for $i = 1, ..., \ell$:

$$y_i := \begin{cases} h(z_i, y_{i-1}) & \text{if } n_i = 1\\ h(y_{i-1}, z_i) & \text{if } n_i = 0 \end{cases}$$

• Checks if $y_{\ell} \stackrel{\text{def}}{=} F_h(x; n; z) \stackrel{?}{=} r_t$.

Example: The verification of $(x_1, t, 0000, (z_1, z_2, z_3, z_4))$:

6

Security condition

Adversary (Haber, Stornetta): Adversary A_{HS} sends requests x_1, \ldots, x_m to S, obtains digests r_1, \ldots, r_s form R, and tries to find (x, t, n, z) so that

 $x \notin \{x_1, \ldots, x_m\}$ and $F_h(x; n; z) = r_t \in \{r_1, \ldots, r_s\}.$

Security condition: Every poly-time A_{HS} has negligible success probability.

The Security Condition is not Attainable!

The scheme above is insecure against the following behavior of A_{HS}:

- A_{HS} picks x and z_0 uniformly at random.
- A_{HS} sends $x_0 = h(x, z_0)$ to S and obtains $c = (x_0, t, n, z)$.
- A_{HS} computes a "fake" certificate $(x, t, 0 || n, z_0 || z)$.

By definition, $F_h(x; 0||n; z_0||z) = F_h(x_0; n; z) = r_t$. Hence, the attack is successful whenever $x \neq x_0$ (as far as $\{x_1, \ldots, x_q\} = \{x_0\}$).

If h has reasonable security properties then $\Pr[x \neq x_0]$ is non-negligible.

New Security Condition

• Bob, a criminal who steals inventions (in cooperation with S), computes r_1, \ldots, r_s (not necessarily using G_h) that are stored in R.

• Alice, an inventor, creates a description X_A of her invention and timestamps $x_A = \mathcal{H}(X_A)$. Some time later, X_A is disclosed to the public.

• Bob creates a slightly modified version X_B of the description (inventor's name should be replaced!) and computes $x = \mathcal{H}(X_B)$

• Bob tries to find (n, z), so that $F_h(x; n; z) \in \{r_1, \ldots, r_s\}$.

New security condition: For every poly-time $A = (A_1, A_2)$ and for every poly-sampleable distribution \mathcal{D} with Rényi entropy $H_2(\mathcal{D}) = \omega(\log k)$:

 $\Pr[(\mathfrak{R}, a) \leftarrow \mathsf{A}_1(1^k), X \leftarrow \mathcal{D}, (n, z) \leftarrow \mathsf{A}_2(X, a) \colon F_h(\mathcal{H}(X); n; z) \in \mathfrak{R}] = k^{-\omega(1)}.$

Security

Let $\mathfrak{N} \subset \{0, 1\}^*$ (set of valid identifiers) and $|\mathfrak{N}| = k^{O(1)}$. \mathfrak{N} can be viewed as a hashing scheme published by S before the service starts.

New verification procedure: To verify c = (x, t, n, z) for $X \in \{0, 1\}^*$, the verifier checks if $x = \mathcal{H}(X)$, $F_h(x; n; z) = r_t$, and $n \in \mathfrak{N}$.

New definition for the success probability of A:

 $\Pr[(\mathfrak{R},\mathfrak{N},a) \leftarrow \mathsf{A}_1(1^k), X \leftarrow \mathcal{D}, (n,z) \leftarrow \mathsf{A}_2(X,a) \colon F_h(\mathcal{H}(X);n;z) \in \mathfrak{R}, n \in \mathfrak{N}]$

Theorem 1: If *h* and \mathcal{H} are collision-resistant, then the time-stamping scheme is secure relative to every polynomially sampleable \mathcal{D} with Rényi entropy $H_2(\mathcal{D}) = \omega(\log k)$.

Proof Sketch

Proof of Theorem 1: Having $A = (A_1, A_2)$ with ratio $T(k)/\delta(k)$, we construct a collision-finder A' for h with ratio $\frac{T'(k)}{\delta'(k)} = k^{O(1)} \left(\frac{T(k)}{\delta(k)}\right)^2$.

- A' calls A_1 to obtain \mathfrak{R} , \mathfrak{N} , and a;
- A' picks $X, X' \leftarrow \mathcal{D}$ and computes $(n, z) \leftarrow A_2(X, a)$, $(n', z') \leftarrow A_2(X', a)$;
- A' simulates $F_h(\mathcal{H}(X); n; z)$ and $F_h(\mathcal{H}(X'); n'; z')$.
- If $F_h(\mathcal{H}(X);n;z) = F_h(\mathcal{H}(X');n';z')$, $\mathcal{H}(X) \neq \mathcal{H}(X')$, and n = n' then A' checks the *h*-calls and outputs a collision for *h*.

We prove (Lemma 1) that if $x \neq x'$ and $F_h(x; n; z) = F_h(x'; n; z')$ then the *h*-calls of $F_h(x; n; z)$ and $F_h(x'; n; z')$ comprise a collision.

It can be shown (Lemma 2) that the success of A' is at least

$$\frac{\delta^2(k)}{T^2(k)} - 2^{-H_2(\mathcal{H}(\mathcal{D}))} = \frac{\delta^2(k)}{T^2(k)} - k^{-\omega(1)}. \qquad \Box$$

11

Security Proofs and Oracle Separation

Semi black-box reduction: $\forall_{pol} A_2 \exists_{pol} A_1$: A_2^h breaks $TS^h \Rightarrow A_1^h$ breaks h.

Black-box reduction: $\exists_{pol}S \forall A$: A breaks $TS^h \Rightarrow S^{A,h}$ breaks h.

Separation: If *h* is collision-resistant relative to \mathcal{O} but TS^h is insecure relative to \mathcal{O} , then there exist no black-box reductions. Strong separation: If in addition, $\mathcal{O} = \pi^h$ for a poly-time π , then there exist no semi black-box reductions.

For more details: Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility between cryptographic primitives. In TCC'04, LNCS 2951, pp.1–20. Feb. 2004.

Necessity of the Modified Verification

We prove that semi black-box reductions are insufficient for proving the security of the unmodified time-stamping scheme, based on the collision-resistance of h (and H).

We construct an oracle \mathcal{O} relative to which there exists a collision-resistant hash function $h^{\mathcal{O}}$: $\{0, 1\}^{2k} \to \{0, 1\}^k$ and a poly-time $(A_1^{\mathcal{O}}, A_2^{\mathcal{O}})$ with

$$\Pr[r \leftarrow \mathsf{A}_1^{\mathcal{O}}, x \leftarrow \mathcal{D}, (n, z) \leftarrow \mathsf{A}_2^{\mathcal{O}}(x, r) \colon F_{h^{\mathcal{O}}}(x; n; z) = r] = 1$$

for every distribution \mathcal{D} on $\{0, 1\}^k$. Hence, $h^{\mathcal{O}}$ makes the unmodified timestamping scheme insecure. (*Rules out black-box reductions*)

We construct a hash function oracle $\mathfrak{H}_k: \{0,1\}^{2k} \to \{0,1\}^k$, which is collision-resistant relative to itself but \mathfrak{H}_{4k} can be used to break the time-stamping scheme that uses \mathfrak{H}_k . (*Rules out semi black-box reductions*)

Construction of \mathcal{O}

 \mathcal{O} comprises a random function $H \leftarrow \mathfrak{F}$ and responds to:

• *H*-queries: on input $(x_1, x_2) \in \{0, 1\}^{2k}$ return $H(x_1, x_2) \in \{0, 1\}^k$.

• A₁-queries: on input 1^k return the root r_k of the complete Merkle tree M_k , the leaves of which are all k-bit strings in lexicographic order.

• A₂-queries: on input $x \in \{0, 1\}^k$ find $z \in (\{0, 1\}^k)^k$ (based on M_k) so that $F_H(x; x; z) = r_k$ and output (x, z).

Choice of H

We define \mathfrak{F} as a set of all functions H, such that for all k:

- all non-leaf vertices in M_k contain different elements of $\{0, 1\}^k$
- all sibling-pairs in M_k are different.

Lemma 5: Every collision-finding adversary $A^{\mathcal{O}}$ for *H* that makes polynomial number of oracle calls, has negligible success.

Construction of *S*

The oracle \mathcal{O} does not yet rule out semi black-box reductions – computation of \mathcal{O} requires an exponential number of *H*-calls, and hence $\mathcal{O} \neq \pi^{H}$.

We embed \mathcal{O}_k into a hash function \mathfrak{H}_{4k} : $\{0, 1\}^{8k} \rightarrow \{0, 1\}^{4k}$:

Open question 1: More Efficient Reductions?

The reduction obtained is *poly-preserving*: $\frac{T'(k)}{\delta'(k)} = k^{O(1)} \cdot \left(\frac{T(k)}{\delta(k)}\right)^2$.

Practical guarantees are limited: If the time-stamping scheme is broken with ratio $\frac{T(k)}{\delta(k)} = 2^{32}$ (very efficiently!) then the reduction implies that *h* with 160-bit output can be broken with ratio 2^{81} , which is trivially true.

The reduction gives practical security guarantees only in case k > 400 - much larger than in the existing schemes.

Question: Are there more efficient reductions? For example, *linear-preserving reductions*: $\frac{T'(k)}{\delta'(k)} = k^{O(1)} \cdot \frac{T(k)}{\delta(k)}$.

Open question 2: General black-box constructions?

Is it possible to construct a hash function $H = P^h$ so that if h is collision resistant then the hash-based time-stamping schemes constructed from H are secure?

Can we prove that there are no general black-box reductions of secure time-stamping schemes to collision-resistant hash functions? *An obstacle:* If an oracle \mathcal{O} is able to compute the root of the complete Merkle tree M_k^f for any (computable) f, then \mathcal{O} can be "abused" to find collisions for any hash function.

Open question 3: Stronger security conditions?

In our security condition, A has unconditional uncertainty about $x \leftarrow \mathcal{D}$.

In practice, it is possible that A_1 has some partial knowledge y = f(x) about x (e.g. ciphertexts or signatures).

This suggests conditions of type: If x can be time-stamped based on y = f(x), then x can be efficiently computed based on y.

Main problem:

• $x_1 = h(x, z_0)$ (where $z_0 \leftarrow_{\mathsf{R}} \{0, 1\}^k$) is *partial knowledge about* x and is sufficient to time stamp x.

• If h is one-way, x cannot be computed from x_1 .

Thank

You!